Industry is adopting artificial intelligence at a growing pace; however, many organisations are struggling to move beyond pilot phase. How can industry scale the use of artificial intelligence, and streamline and operationalise its use? We explore five new adoption strategies and technology advancements that are promising to help industry in its efforts to scale AI and start generating return on investment.
Siloed specialised business units are increasingly being replaced with centralised multitalented teams, comprised of highly skilled data scientists, subject matter experts, engineers, and operators. By combining a diverse group of skill sets, teams can work together on business-critical matters, rapidly producing, testing, and implementing insights from AI models. These teams encourage collaboration and experimentation and encourage the use of advanced analytics throughout an organisation.
Being able to explain a prediction or model result is critical to building trust and ultimately to scaling AI. No longer just a black box, artificial intelligence needs to be explainable. Platforms that drill down into the rational and root cause and can produce a DNA map of all contributing factors overtime will win confidence and assist in the adoption of AI across a business. Being able to produce an AL model is no longer sufficient, professionals need to explain the insights acquired for it to drive business decisions. Discover how OPUS allows users to drill down into data insights, right down to the sensor level to help operators understand contributing factors and root causes.
Automated machine learning (AutoML) and low/no-code machine learning tools are helping industry to scale the use of artificial intelligence. These tools allow machine learning algorithms to be produced without any coding, programming knowledge or experience. The end result is an AI model that the user can put into a live production environment to be used for predictive maintenance and optimization of industrial equipment and processes.
OPUS combines autoML in its end-to-end automated process, where no-code models can be deployed straight into a live production environment, update automatically, learning from newly ingested data on a continuous basis, providing on-going live monitoring and predictions.
The efficient deployment, continuous retraining of models with live data and monitoring of model accuracy falls under the categorisation called MLOps. As businesses have hundreds and even thousands of models in operation, MLOps becomes essential to streamline and automate this process. Without MLOps, model deployment can take many businesses months, and often change ownership to IT, limiting the ability to scale and operationalize the use of artificial intelligence. OPUS has included MLOps into its end-to-end automated process, allowing models to be developed, deployed and managed seamlessly.
Rather than committing to a few pilot projects, industry is adopting a fast-fail rapid AI experimentation approach, which is enabled by the adoption of AutoML and MLOps. AI models will be able to be produced within hours, allowing businesses to rapidly test theories and predict outcomes. Switching the focus off model creation onto execution of the insights obtained from the models.
These new approaches and advances in technology will help industrialise the use of AI. Businesses will be able to scale the use of their data across their business for advanced analytics and improved decision making. It is these adoptions which will lead to the realisation of the value that researchers such as McKinsey have reported, including as predictive maintenance which will generate $260 billion to $460 billion by 2030 across industries, and for Oil and Gas specifically, operational improvements that would lead to $80 billion to $300 billion in economic value annually by 2030.
If you are interested in learning more about these strategies and solutions, reach out to our team. Alternatively discover our wide range of case studies from customers who have successfully implemented AI across a wide range of process industries and production facilities.
Five Data and AI essentials that every council or city C Suite member needs to understand, plus helpful next steps you can implement straight away.
Read ArticleInterested in a demo of one of our data solution products?
DataHUB4.0 is our enterprise data historian solution, OPUS is our Auto AI platform and OASIS is our remote control solution for Smart Cities and Facilities.
Book your demo with our team today!
Ready to embark on a pilot project or roll-out AI innovation enterprise wide? Perhaps you need assistance integrating your systems or storing your big data? Whatever the situation, we are ready to help you on your digital transformation.
The efficient deployment, continuous retraining of models with live data and monitoring of model accuracy falls under the categorisation called MLOps. As businesses have hundreds and even.
Learn more about DataHUB+, VROC's enterprise data historian and visualization platform. Complete the form to download the product sheet.
Discover how you can connect disparate systems and smart innovations in one platform, and remotely control your smart facility. Complete the form to download the product sheet.
'OPUS, an artistic work, especially on a large scale'
Please complete the form to download the OPUS Product Sheet, and discover how you can scale Auto AI today.
Interested in reading the technical case studies? Complete the form and our team will be in touch with you.
Subscribe to our newsletter for quarterly VROC updates and industry news.